This paper presents a new statistical analysis aiming to explain the recent superior achievements of the pre-training techniques in natural language processing (NLP). We prove that when the classes of the pre-training task (e.g., different words in the masked language model task) are sufficiently diverse, in the sense that the least singular value of the last linear layer in pre-training (denoted as $\tilde{\nu}$) is large, then pre-training can significantly improve the sample efficiency of downstream tasks. Specially, we show the transfer learning excess risk enjoys an $O\left(\frac{1}{\tilde{\nu} \sqrt{n}}\right)$ rate, in contrast to the $O\left(\frac{1}{\sqrt{m}}\right)$ rate in the standard supervised learning. Here, $n$ is the number of pre-training data and $m$ is the number of data in the downstream task, and typically $n \gg m$. Our proof relies on a vector-form Rademacher complexity chain rule for disassembling composite function classes and a modified self-concordance condition. These techniques can be of independent interest.


翻译:本文介绍了一项新的统计分析,旨在解释培训前自然语言处理技术(NLP)最近取得的优异成就。我们证明,当培训前任务类别(例如,隐蔽语言模式任务中的不同字词)充分多样化时,培训前最后线性层的最低单值(称为$\tilde_nu})是很大的,然后培训前可以大大提高下游任务的抽样效率。特别是,我们表明,转让学习过度风险的超额风险享有美元(left) (\frac{1untlex}\sqrt{n ⁇ right) 的费率,与标准监督学习中的$(fleft) (\frac{1unsqrt{m ⁇ right) 的费率相对。在这里,美元是培训前数据的数量,美元是下游任务中的数据数量,通常为$ng=m美元。我们的证据依赖于矢量组合功能分解的雷德马彻复杂链规则。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
13+阅读 · 2020年4月12日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员