This paper studies information-theoretically secure quantum homomorphic encryption (QHE) schemes of classical data. Previous works on information-theoretically secure QHE schemes (like Childs'05, Liang'13, and others) are typically based on the Quantum-One-Time-Pad (QOTP) approach of Ambainis et al. [AMTdW'00]. There, the encryption of a bit is a qubit, randomly selected from a set of four possible qubits. This paper takes a different approach and presents the RBE (Random-Basis Encryption) scheme -- a QHE scheme in which the encryption of a bit is a qubit, randomly selected from a set of an immense number of qubits. Second, this paper studies weak measurements (WM) and presents a WM-based attack on legacy QOTP-based Quantum Key Distribution (QKD) protocols. Then, we use the RBE scheme to construct a QKD protocol and argue that this protocol is resilient to such WM-based attacks. Finally, this paper raises the following question. Entanglement is an essential resource in quantum information and quantum computation research. Hence, once generated, how can its owner secure entangled systems of qubits? We inspect possible QOTP-based solutions, suggest an RBE-based solution, and discuss some of the benefits of the latter.
翻译:本文研究的是信息- 安全量子同质加密( QHE) 古典数据 。 以往的信息- 理论安全 QHE 计划( 如 Childs' 05, Liang' 13 等) 工作通常基于Ambainis 等人的量子- 单时帕( QOTP) 方法 。 此文件对遗留的基于 QOTP 的量子键分配( QKD) 协议进行基于WM 的攻击。 然后, 我们使用 RBE 计划来构建一个 QKD 协议, 并论证这项协议是QKD 计划( 兰多- Basis 加密) 计划, 这是一种QHE 计划, 其中, 从大量量子( QOT) 等中随机选择的加密方法。 其次, 本文对基于 QOT 的量基 系统分配( QKD) 协议 进行基于 协议 随机选择。 我们使用 RBE 计划来构建一个QD 协议, 并论证这个协议是如何适应WM QD 的基 的量级解决方案 研究。 最后, 能够 。 这个基于 QQQQQQQQQQQQQQQQQQ 研究。 。 。, 我们 的 研究 的 的 的 的 能够 。