Approximate integer programming is the following: For a convex body $K \subseteq \mathbb{R}^n$, either determine whether $K \cap \mathbb{Z}^n$ is empty, or find an integer point in the convex body scaled by $2$ from its center of gravity $c$. Approximate integer programming can be solved in time $2^{O(n)}$ while the fastest known methods for exact integer programming run in time $2^{O(n)} \cdot n^n$. So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point $x^* \in (K \cap \mathbb{Z}^n)$ can be found in time $2^{O(n)}$, provided that the remainders of each component $x_i^* \mod{\ell}$ for some arbitrarily fixed $\ell \geq 5(n+1)$ of $x^*$ are given. The algorithm is based on a cutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a $2^{O(n)}n^n$ algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (2012) that is considerably more involved. Our algorithm also relies on a new asymmetric approximate Carath\'eodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form $Ax = b, 0 \leq x \leq u, \, x \in \mathbb{Z}^n$ . Such a problem can be reduced to the solution of $\prod_i O(\log u_i +1)$ approximate integer programming problems. This implies, for example that knapsack or subset-sum problems with polynomial variable range $0 \leq x_i \leq p(n)$ can be solved in time $(\log n)^{O(n)}$. For these problems, the best running time so far was $n^n \cdot 2^{O(n)}$.


翻译:近似整数编程如下: 对于一个 comvex 机构 $K\ sublicalqualb{rn美元, 要么确定 $K\ cap\ mathb<unk> n$是空的, 要么在 convex 机构中找到一个整数点, 从重力中心 $c美元, 大约整数编程可以及时解决 $<unk> O(n) 美元, 而已知精确整数编程在时间运行的最快方法 $%O(n)\ kdostn) 。 到目前为止, 目前没有已知的以近似整数程序编程为基础的有效方法。 我们的主要贡献是两种这样的方法, 每一个产生新的复杂结果。 首先, 我们显示一个整数点 $x\\ 美元 (n) 在时间里可以找到 $x\\\\ = =x\\ mox kell kell fal_ mail max max mail mail max a mill lix lix a prial ligimal a pal lizeal a ligudeal a ligle ligal a 。 ligudeal a pre a pal a le a ligudeal a pal a pal a ligle a liglex_</s>

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员