The design of a neural network is usually carried out by defining the number of layers, the number of neurons per layer, their connections or synapses, and the activation function that they will execute. The training process tries to optimize the weights assigned to those connections, together with the biases of the neurons, to better fit the training data. However, the definition of the activation functions is, in general, determined in the design process and not modified during the training, meaning that their behavior is unrelated to the training data set. In this paper we propose the definition and utilization of an implicit, parametric, non-linear activation function that adapts its shape during the training process. This fact increases the space of parameters to optimize within the network, but it allows a greater flexibility and generalizes the concept of neural networks. Furthermore, it simplifies the architectural design since the same activation function definition can be employed in each neuron, letting the training process to optimize their parameters and, thus, their behavior. Our proposed activation function comes from the definition of the consensus variable from the optimization of a linear underdetermined problem with an $L_p^q$ regularization term, via the Alternating Direction Method of Multipliers (ADMM). We define the neural networks using this type of activation functions as $pq-$networks. Preliminary results show that the use of these neural networks with this type of adaptive activation functions reduces the error in regression and classification examples, compared to equivalent regular feedforward neural networks with fixed activation functions.
翻译:神经网络的设计通常通过界定层数、 层中神经元数、 每层神经元数、 其连接或突触以及他们将要执行的激活功能来进行。 培训过程试图优化为这些连接分配的重量以及神经元的偏向, 以更好地适应培训数据。 但是, 启动功能的定义一般是在设计过程中确定的, 在培训期间没有修改, 意味着他们的行为与培训数据集无关。 本文中我们建议定义和使用一个隐含的、 参数性的、 非线性激活功能, 以在培训过程中调整其形状。 这一事实增加了优化网络内部的参数空间, 但它允许更大的灵活性和神经元的偏差, 以更好地适应神经网络的概念。 此外, 它简化了结构设计, 因为相同的激活功能定义可以在每个神经元中应用, 让培训过程优化其参数, 因此, 他们的行为。 我们拟议的激活功能来自对共识变量的定义, 由直线性、 直线性、 等值的神经元网络 优化, 以正等值 的正值 平流性网络, 通过 Allial 方向 定义, 将 常规 格式 定义 。