Estimating a Gibbs density function given a sample is an important problem in computational statistics and statistical learning. Although the well established maximum likelihood method is commonly used, it requires the computation of the partition function (i.e., the normalization of the density). This function can be easily calculated for simple low-dimensional problems but its computation is difficult or even intractable for general densities and high-dimensional problems. In this paper we propose an alternative approach based on Maximum A-Posteriori (MAP) estimators, we name Maximum Recovery MAP (MR-MAP), to derive estimators that do not require the computation of the partition function, and reformulate the problem as an optimization problem. We further propose a least-action type potential that allows us to quickly solve the optimization problem as a feed-forward hyperbolic neural network. We demonstrate the effectiveness of our methods on some standard data sets.
翻译:给一个样本来估计 Gibbs 密度函数是计算统计和统计学习中的一个重要问题。虽然通常使用公认的最大可能性方法,但需要计算分区函数(即密度的正常化)。这个函数可以很容易地计算出简单的低维问题,但对于一般密度和高维问题来说,这个函数很难计算,甚至难以计算。在本文中,我们建议了一种基于最大A-Poceori(MAP)估计器的替代方法,我们命名了最大恢复 MAP(MR-MAP),以得出不需要计算分区函数的估测器,并将问题重新表述为优化问题。我们进一步提议了一个最小行动类型的潜力,使我们能够迅速解决优化问题,作为向前的双向神经网络。我们在某些标准数据集中展示了我们的方法的有效性。