We introduce a novel mathematical formulation for the training of feed-forward neural networks with (potentially non-smooth) proximal maps as activation functions. This formulation is based on Bregman distances and a key advantage is that its partial derivatives with respect to the network's parameters do not require the computation of derivatives of the network's activation functions. Instead of estimating the parameters with a combination of first-order optimisation method and back-propagation (as is the state-of-the-art), we propose the use of non-smooth first-order optimisation methods that exploit the specific structure of the novel formulation. We present several numerical results that demonstrate that these training approaches can be equally well or even better suited for the training of neural network-based classifiers and (denoising) autoencoders with sparse coding compared to more conventional training frameworks.


翻译:我们采用了一种新的数学配方,用于培训进料向神经网络,以(可能非悬浮)准地图作为激活功能。这种配方基于Bregman距离,一个关键优势是其网络参数方面的部分衍生物不需要计算网络激活功能的衍生物。我们建议使用非吸附第一线优化方法,利用新配方的具体结构。我们提出了一些数字结果,表明这些培训方法可以同样或甚至更适合以神经网络为基础的分类师和与较传统的培训框架相比,以稀疏的编码(稀疏)自动编码师的培训。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员