Maximum Common induced Subgraph (MCS) is an important NP-hard problem with wide real-world applications. Branch-and-Bound (BnB) is the basis of a class of efficient algorithms for MCS, consisting in successively selecting vertices to match and pruning when it is discovered that a solution better than the best solution found so far does not exist. The method of selecting the vertices to match is essential for the performance of BnB. In this paper, we propose a new value function and a hybrid selection strategy used in reinforcement learning to define a new vertex selection method, and propose a new BnB algorithm, called McSplitDAL, for MCS. Extensive experiments show that McSplitDAL significantly improves the current best BnB algorithms, McSplit+LL and McSplit+RL. An empirical analysis is also performed to illustrate why the new value function and the hybrid selection strategy are effective.
翻译:最大引致共性子谱( MMCS) 是广泛现实应用中一个重要的 NP 硬性问题。 分支和组合( BnB) 是监控CS 有效算法类别的基础, 包括连续选择脊椎来匹配和剪裁, 当发现一个比迄今找到的最佳解决方案更好的解决方案并不存在时。 选择匹配的脊椎的方法对于 BnB 的绩效至关重要。 在本文中, 我们提出了一个新的值函数和混合选择战略, 用于强化学习以定义新的顶端选择方法, 并为 MCS 提出一个新的 BnB 算法, 称为 McSplitDAL 。 广泛的实验显示, McSplitDAL 显著改进了当前最佳的 BnB 算法、 McSplit+LLL 和 McSplit+RL 。 实验还进行了实验性分析, 以说明为什么新的值函数和混合选择战略是有效的。