This paper introduces a zero-shot sound event classification (ZS-SEC) method to identify sound events that have never occurred in training data. In our previous work, we proposed a ZS-SEC method using sound attribute vectors (SAVs), where a deep neural network model infers attribute information that describes the sound of an event class instead of inferring its class label directly. Our previous method showed that it could classify unseen events to some extent; however, the accuracy for unseen events was far inferior to that for seen events. In this paper, we propose a new ZS-SEC method that can learn discriminative global features and local features simultaneously to enhance SAV-based ZS-SEC. In the proposed method, while the global features are learned in order to discriminate the event classes in the training data, the spectro-temporal local features are learned in order to regress the attribute information using attribute prototypes. The experimental results show that our proposed method can improve the accuracy of SAV-based ZS-SEC and can visualize the region in the spectrogram related to each attribute.
翻译:本文介绍了一种零样本声音事件分类(ZS-SEC)方法,用于识别在训练数据中从未发生过的声音事件。在我们之前的工作中,提出了一种使用声音属性向量(SAVs)的ZS-SEC方法,其中深度神经网络模型推断描述事件类别声音的属性信息,而不是直接推断其类别标签。我们之前的方法表明,它可以在一定程度上分类未见事件;但是,对于未见事件,准确性远不及对于已见事件的准确性。在本文中,我们提出了一种新的ZS-SEC方法,可以同时学习判别全局特征和局部特征,以增强基于SAV的ZS-SEC。在所提出的方法中,全局特征被学习以区分训练数据中的事件类别,而谱-时间局部特征被学习以使用属性原型回归属性信息。实验结果表明,我们提出的方法可以提高SAV基础ZS-SEC的准确性,并且可以可视化与每个属性相关的声谱图区域。