We study approximation properties of linear sampling operators in the spaces $L_p$ for $1\le p<\infty$. By means of the Steklov averages, we introduce a new measure of smoothness that simultaneously contains information on the smoothness of a function in $L_p$ and discrete information on the behaviour of a function at sampling points. The new measure of smoothness enables us to improve and extend several classical results of approximation theory to the case of linear sampling operators. In particular, we obtain matching direct and inverse approximation inequalities for sampling operators in $L_p$, find the exact order of decay of the corresponding $L_p$-errors for particular classes of functions, and introduce a special $K$-functional and its realization suitable for studying smoothness properties of sampling operators.
翻译:我们研究空间线性取样操作员的近似特性($L_p$,$1\le p ⁇ infty$),我们采用新的平滑度测量方法,同时包含以美元计算的函数平滑度的信息和关于取样点函数行为的离散信息。新的平滑度测量方法使我们能够改进近似理论的一些传统结果,并将这些结果推广到线性取样操作员的情况。特别是,我们获得了将采样操作员的直接和反近近近近不均值的匹配值($L_p$,美元),找到某类函数相应的以美元计值的折损顺序,并引入了一种特别的美元功能性,其实现适合于研究采样操作员的平稳性能。