We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems, which we call dynamical dimension reduction (DDR). In the DDR model, each point is evolved via a nonlinear flow towards a lower-dimensional subspace; the projection onto the subspace gives the low-dimensional embedding. Training the model involves identifying the nonlinear flow and the subspace. Following the equation discovery method, we represent the vector field that defines the flow using a linear combination of dictionary elements, where each element is a pre-specified linear/nonlinear candidate function. A regularization term for the average total kinetic energy is also introduced and motivated by optimal transport theory. We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method. We also show how the DDR method can be trained using a gradient-based optimization method, where the gradients are computed using the adjoint method from optimal control theory. The DDR method is implemented and compared on synthetic and example datasets to other dimension reductions methods, including PCA, t-SNE, and Umap.
翻译:我们提出了一个基于非线性动态系统(我们称之为“DDD”)的低维数据代表新颖框架,用于学习基于非线性动态系统(我们称之为“DDR”)的低维数据。在DDR模式中,每个点都是通过非线性流向低维子空间演变的;在子空间的投影可以进行低维嵌入;该模型的培训涉及确定非线性流和子空间。在采用方程式发现方法之后,我们代表矢量字段,使用词典元素的线性组合来定义流动,其中每个元素都是预先指定的线性/非线性候选功能。平均总动能的正规化术语也由最佳运输理论引入和驱动。我们证明由此产生的优化问题已经妥善部署,并确立了DDR方法的若干特性。我们还展示了如何使用基于梯度的优化方法对DDDR方法进行培训,在那里使用最佳控制理论的连接法计算梯度。DDR方法是实施的,并在合成和示例数据集与包括CPA、t-SNE和Ump在内的其他维减少方法进行比较。