It is known that the quantale of sup-preserving maps from a complete lattice to itself is a Frobenius quantale if and only if the lattice is completely distributive. Since completely distributive lattices are the nuclear objects in the autonomous category of complete lattices and sup-preserving maps, we study the above statement in a categorical setting. We introduce the notion of Frobenius structure in an arbitrary autonomous category, generalizing that of Frobenius quantale. We prove that the monoid of endomorphisms of a nuclear object has a Frobenius structure. If the environment category is star-autonomous and has epi-mono factorizations, a variant of this theorem allows to develop an abstract phase semantics and to generalise the previous statement. Conversely, we argue that, in a star-autonomous category where the monoidal unit is a dualizing object, if the monoid of endomorphisms of an object has a Frobenius structure and the monoidal unit embeds into this object as a retract, then the object is nuclear.
翻译:已知的是,从一个完整的拉丁拼图到一个完整的拉丁拼图本身的复方程图的方程是一个Frobenius 方程图,如果而且只有在拉丁拼图是完全分布的。由于完全分布式拉特克是完整的拉丁拼图和苏普保存图的自主类别中的核对象,我们以绝对的语境研究上述声明。我们把弗罗贝尼乌斯结构的概念引入一个任意的自主类别,将弗罗贝尼乌斯的方程图作一般化。我们证明,一个核对象的内立体有一个弗罗比尼乌斯结构。如果环境类别是恒星自主的,并且具有上层分层因子化的因子化作用,则该理论的变种可以开发一个抽象的阶段的语义,并概括上一个声明。相反,我们争辩说,在一个恒的自治类别中,如果一个物体的单方形单元是一个双重的物体,那么该物体的单方形体结构以及一个单形单元作为反向的反射体嵌入该物体。