Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.
翻译:深心神经网络结构的设计和探索历来都是在长期试验和感官过程中以人类专门知识设计并探索的深心神经网络结构。 这一过程需要大量的时间、 专长和资源。 为了解决这一棘手问题, 我们建议了一种新的算法, 以最佳方式找到深网络结构的超参数。 我们特别侧重于设计用于医学图像分割任务的神经结构。 我们提议的方法基于政策梯度强化学习, 奖励功能被指派给分化评估功能( diice 指数 ) 。 我们展示了拟议方法的功效, 其计算成本低, 与最先进的医学图像分割网络相比, 需要大量的时间、 专门知识和资源。 为了解决这一棘手的问题, 我们提出了一个新的算法, 以最佳的方式找到深深网络结构的超分解仪。 我们把拟议的算法应用到基线结构的每一层。 作为应用, 我们从自动卡迪亚克诊断挑战( ACDC) MICITAI 201717, 从一个基线分解结构开始, 或者从任何以精确度为基础的结构结构变化开始, 进行基于任何基于网络结构结构的精确性结构变化。