Agricultural robots have the prospect to enable more efficient and sustainable agricultural production of food, feed, and fiber. Perception of crops and weeds is a central component of agricultural robots that aim to monitor fields and assess the plants as well as their growth stage in an automatic manner. Semantic perception mostly relies on deep learning using supervised approaches, which require time and qualified workers to label fairly large amounts of data. In this paper, we look into the problem of reducing the amount of labels without compromising the final segmentation performance. For robots operating in the field, pre-training networks in a supervised way is already a popular method to reduce the number of required labeled images. We investigate the possibility of pre-training in a self-supervised fashion using data from the target domain. To better exploit this data, we propose a set of domain-specific augmentation strategies. We evaluate our pre-training on semantic segmentation and leaf instance segmentation, two important tasks in our domain. The experimental results suggest that pre-training with domain-specific data paired with our data augmentation strategy leads to superior performance compared to commonly used pre-trainings. Furthermore, the pre-trained networks obtain similar performance to the fully supervised with less labeled data.
翻译:农业机器人有望实现粮食、饲料和纤维的更高效和可持续农业生产。作物和杂草的感知是农业机器人的核心组成部分,旨在以自动方式监视田野并评估植物及其生长阶段。语义感知主要依靠深度学习使用监督方法,需要时间和经过训练的工作人员来标记相当数量的数据。在本文中,我们探讨了如何减少标签数量而不影响最终分割性能的问题。对于在田间操作的机器人,预先以监督方式训练网络已经成为减少所需标记图像数量的流行方法。我们研究了使用目标领域的自我监督数据进行预训练的可能性。为了更好地利用这些数据,我们提出了一组领域特定的数据增强策略。我们评估了我们在语义分割和叶片实例分割两个重要任务中进行的预训练。实验结果表明,使用领域特定数据进行预训练并将其与我们的数据增强策略配对可以比常用的预训练方法获得更优异的性能。此外,预训练的网络获得了类似于完全监督网络的性能,但是需要更少的标记数据。