We survey research on self-driving cars published in the literature focusing on autonomous cars developed since the DARPA challenges, which are equipped with an autonomy system that can be categorized as SAE level 3 or higher. The architecture of the autonomy system of self-driving cars is typically organized into the perception system and the decision-making system. The perception system is generally divided into many subsystems responsible for tasks such as self-driving-car localization, static obstacles mapping, moving obstacles detection and tracking, road mapping, traffic signalization detection and recognition, among others. The decision-making system is commonly partitioned as well into many subsystems responsible for tasks such as route planning, path planning, behavior selection, motion planning, and control. In this survey, we present the typical architecture of the autonomy system of self-driving cars. We also review research on relevant methods for perception and decision making. Furthermore, we present a detailed description of the architecture of the autonomy system of the UFES's car, IARA. Finally, we list prominent autonomous research cars developed by technology companies and reported in the media.
翻译:我们调查文献中出版的自驾驶汽车研究,重点是自达巴挑战以来开发的自驾驶汽车,这些自驾驶汽车配备了可分为SAE三级或三级以上的自治系统;自驾驶汽车的自驾驶系统结构通常组织成感知系统和决策系统;感知系统一般分为许多分系统,负责自行驾驶汽车的定位、静态障碍绘图、移动障碍探测和跟踪、道路测绘、交通信号探测和识别等任务;决策系统通常被分割,并分属于许多负责诸如路线规划、路径规划、行为选择、运动规划和控制等任务的分系统;我们在这次调查中介绍了自驾驶汽车自治系统的典型结构;我们还审查了关于自驾驶汽车的感知和决策相关方法的研究;此外,我们详细介绍了UFES汽车自治系统的结构,即IARA。最后,我们列举了技术公司开发并在媒体中报道的著名自主研究汽车。