Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
翻译:深层学习是最新、现代的图像处理和数据分析技术,有希望的成果和巨大潜力。深层学习已成功地应用于各个领域,最近也进入农业领域。在本文件中,我们调查了40项研究工作,这些研究采用了深层学习技术,应用于各种农业和粮食生产挑战。我们研究了研究中的特殊农业问题、所采用的具体模型和框架、所使用的数据的来源、性质和预处理,以及根据每项研究中使用的衡量标准所取得的总体业绩。此外,我们研究了与其他现有流行技术的深层学习比较,以了解分类或回归性能的差异。我们的调查结果显示,深层学习提供了很高的准确性,优于现有的通用图像处理技术。