近年来,长尾分布数据的视觉识别问题受到了越来越多的关注。通过大量的实验,我们发现在相同的训练设置,不同的模型初始化下,长尾数据训练出的模型表现出相当大的差异,这体现出了长尾学习中巨大的不确定性。为了减轻这种不确定性,我们提出了一种多专家网络的嵌套式的协同学习方法(NCL),它由两个部分组成,即嵌套个体学习(NIL)和嵌套平衡在线蒸馏(NBOD),前者着重于单个专家网络的学习,后者则帮助多个专家网络传递学到的知识,协同学习。NIL和NBOD都在嵌套的关系中学习,即基于所有类别的全局注意力学习和基于难类别的局部注意力学习。这样的嵌套关系来自于我们提出的简洁有效的难类别挖掘模块(HCM)。对于网络的输出分数,HCM仅选择部分拥有高分数的难类别作为网络训练的负类别,这样便构建出了嵌套关系中的局部注意力。通过NCL,网络的学习彼此嵌套、互补,这样不仅有利于网络捕捉到全局且鲁棒的特征,还提升了网络对更细粒度信息的区分能力。除此之外,自监督也被应用到其中,加强特征的学习。该方法在长尾数据库CIFAR-10/100-LT, Places-LT, ImageNet-LT和 iNaturalist 2018上都取得了目前最好的性能。
作者:Jun Li, Zichang Tan, Jun Wan, Zhen Lei, Guodong Guo