Due to insufficient or difficult to obtain data on development in inaccessible regions, remote sensing data is an important tool for interested stakeholders to collect information on economic growth. To date, no studies have utilized deep learning to estimate industrial growth at the level of individual sites. In this study, we harness high-resolution panchromatic imagery to estimate development over time at 419 industrial sites in the People's Republic of China using a multi-tier computer vision framework. We present two methods for approximating development: (1) structural area coverage estimated through a Mask R-CNN segmentation algorithm, and (2) imputing development directly with visible & infrared radiance from the Visible Infrared Imaging Radiometer Suite (VIIRS). Labels generated from these methods are comparatively evaluated and tested. On a dataset of 2,078 50 cm resolution images spanning 19 years, the results indicate that two dimensions of industrial development can be estimated using high-resolution daytime imagery, including (a) the total square meters of industrial development (average error of 0.021 $\textrm{km}^2$), and (b) the radiance of lights (average error of 9.8 $\mathrm{\frac{nW}{cm^{2}sr}}$). Trend analysis of the techniques reveal estimates from a Mask R-CNN-labeled CNN-LSTM track ground truth measurements most closely. The Mask R-CNN estimates positive growth at every site from the oldest image to the most recent, with an average change of 4,084 $\textrm{m}^2$.
翻译:由于无法获得关于无法进入地区的发展的数据不足或难以获得,遥感数据是感兴趣的利益攸关方收集经济增长信息的重要工具;迄今为止,没有任何研究利用深层学习来估计个别地点的工业增长情况;在这项研究中,我们利用高分辨率全色图像来利用多层计算机愿景框架来估计中华人民共和国419个工业地点的一段时间发展情况;我们提出了两种接近发展的方法:(1)通过Mack R-CNN分割算法估计的结构区域覆盖面;(2)利用可见的红外成像辐射仪(VIIRS)直接利用可见的红外成像辐射来预测发展;这些方法产生的实验室得到比较评估和测试;在长达19年的2 078 50厘米分辨率图像数据集中,结果显示工业发展的两个层面可以用高分辨率日间图像来估计,包括:(a)工业发展的总面积(平均误差0.021美元=km@km2),以及(b)从可见红外成像成像仪4、红外成像仪和红外成像分析最接近的R_r_rxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx