Ultrasound imaging is one of the most prominent technologies to evaluate the growth, progression, and overall health of a fetus during its gestation. However, the interpretation of the data obtained from such studies is best left to expert physicians and technicians who are trained and well-versed in analyzing such images. To improve the clinical workflow and potentially develop an at-home ultrasound-based fetal monitoring platform, we present a novel fetus phantom ultrasound dataset, FPUS23, which can be used to identify (1) the correct diagnostic planes for estimating fetal biometric values, (2) fetus orientation, (3) their anatomical features, and (4) bounding boxes of the fetus phantom anatomies at 23 weeks gestation. The entire dataset is composed of 15,728 images, which are used to train four different Deep Neural Network models, built upon a ResNet34 backbone, for detecting aforementioned fetus features and use-cases. We have also evaluated the models trained using our FPUS23 dataset, to show that the information learned by these models can be used to substantially increase the accuracy on real-world ultrasound fetus datasets. We make the FPUS23 dataset and the pre-trained models publicly accessible at https://github.com/bharathprabakaran/FPUS23, which will further facilitate future research on fetal ultrasound imaging and analysis.
翻译:超声成像是评估胎儿在妊娠期间成长、进展和总体健康状况的最突出的技术之一,然而,对从这些研究中获得的数据的解释最好留给受过训练并精通分析这些图像的专家医生和技术人员。为了改进临床工作流程,并有可能开发一个以家庭超声波为基础的超声波胎儿监测平台,我们提出了一个新的胎儿假象超声波数据集,FPUS23, 可用于确定:(1) 用于估计胎儿生物测定值的正确诊断机,(2) 胎儿方向,(3) 其解剖特征,(4) 胎儿幻影解剖的捆绑箱,在23周的妊娠期间。整个数据集由15 728个图像组成,用于在ResNet34主干线上培训四种不同的深心神经网络模型,用于检测上述胎儿特征和使用案例。我们还评估了利用FPUS23数据集培训的模型,以方便胎儿定位、3 其解剖特征和(4) 胎形形形图的框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框</s>