In recent years, deep neural networks have defined the state-of-the-art in semantic segmentation where their predictions are constrained to a predefined set of semantic classes. They are to be deployed in applications such as automated driving, although their categorically confined expressive power runs contrary to such open world scenarios. Thus, the detection and segmentation of objects from outside their predefined semantic space, i.e., out-of-distribution (OoD) objects, is of highest interest. Since uncertainty estimation methods like softmax entropy or Bayesian models are sensitive to erroneous predictions, these methods are a natural baseline for OoD detection. Here, we present a method for obtaining uncertainty scores from pixel-wise loss gradients which can be computed efficiently during inference. Our approach is simple to implement for a large class of models, does not require any additional training or auxiliary data and can be readily used on pre-trained segmentation models. Our experiments show the ability of our method to identify wrong pixel classifications and to estimate prediction quality. In particular, we observe superior performance in terms of OoD segmentation to comparable baselines on the SegmentMeIfYouCan benchmark, clearly outperforming methods which are similarly flexible to implement.
翻译:近些年来,深心神经网络定义了语义区段中最先进的静脉分解方法,它们的预测局限于预先确定的一套语义类,它们应部署在自动驾驶等应用中,尽管它们绝对封闭的表达力与这种开放的世界情景相反,但它们的绝对封闭的表达力与这种开放的世界情景相反。因此,从其预定义的语义区段空间以外的物体的探测和分解,即分配外(OoD)天体,是人们最感兴趣的。由于软max entropy 或 Bayesian 模型等不确定性估计方法对错误预测十分敏感,这些方法是OOD探测的自然基线。在这里,我们提出一种方法,从在推断过程中可以有效计算到的等离差损失梯度梯度的不确定性分计得分数。我们的方法简单易用于大型模型的实施,不需要任何额外的培训或辅助数据,并且可以很容易地用于经过事先训练的分解模型。我们的实验表明我们确定错误的像素分类和估计质量的方法的能力。特别是,我们观察到OD分解方法的优异性性性性性性性业绩,在可与CSOC-MAL-MAL-MAL-MAL-MY-MY-D-D-S-CAL-SAL-CAL-CAL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S</s>