Few-shot semantic segmentation (FSS) aims to achieve novel objects segmentation with only a few annotated samples and has made great progress recently. Most of the existing FSS models focus on the feature matching between support and query to tackle FSS. However, the appearance variations between objects from the same category could be extremely large, leading to unreliable feature matching and query mask prediction. To this end, we propose a Support-induced Graph Convolutional Network (SiGCN) to explicitly excavate latent context structure in query images. Specifically, we propose a Support-induced Graph Reasoning (SiGR) module to capture salient query object parts at different semantic levels with a Support-induced GCN. Furthermore, an instance association (IA) module is designed to capture high-order instance context from both support and query instances. By integrating the proposed two modules, SiGCN can learn rich query context representation, and thus being more robust to appearance variations. Extensive experiments on PASCAL-5i and COCO-20i demonstrate that our SiGCN achieves state-of-the-art performance.
翻译:微小的语义分解(FSS)的目的是实现新对象分解,只有几个附加说明的样本,并且最近取得了很大进展。现有的FSS模型大多侧重于支持和查询之间的特征匹配,以解决FSS问题。然而,同一类别对象之间的外观变化可能非常大,导致特征匹配和查询掩码预测不可靠。为此,我们提议建立一个支持驱动的图表革命网络(SiGCN),以在查询图像中明确挖掘潜在背景结构。具体地说,我们提议一个支持驱动的图表解释模块(SiGR),以用支持驱动的GCN捕捉不同层次的突出的语义查询对象部分。此外,一个实例关联模块(IA)旨在从支持和查询中捕捉高顺序实例环境。通过整合拟议的两个模块,SiGCN可以学习丰富的查询背景代表,从而更加强大地适应外观变化。关于PaSCAL-5i和CO-20i的大规模实验表明,我们的SiGCN实现了艺术状态。</s>