We derive an $L_1$-bound between the coefficients of the optimal causal filter applied to the data-generating process and its approximation based on finite sample observations. Here, we assume that the data-generating process is second-order stationary with either short or long memory autocovariances. To obtain the $L_1$-bound, we first provide an exact expression of the causal filter coefficients and their approximation in terms of the absolute convergent series of the multistep ahead infinite and finite predictor coefficients, respectively. Then, we prove a so-called uniform-type Baxter's inequality to obtain a bound for the difference between the two multistep ahead predictor coefficients (under both short and memory time series). The $L_1$-approximation error bound of the causal filter coefficients can be used to evaluate the quality of the predictions of time series through the mean squared error criterion.
翻译:我们从适用于数据生成过程的最佳因果过滤器系数与基于有限抽样观察的近似值之间得出1美元限值。 在这里, 我们假设数据生成过程是第二阶固定的, 有短或长内存自动变量。 要获得1美元限值, 我们首先精确地表示因果过滤系数及其近似值, 分别以前方多步无限和有限预测系数的绝对趋同序列为准。 然后, 我们证明所谓的统一型巴克斯特的不平等性, 以获得前方两个多步预测系数( 短时间序列和内存时间序列下)之间的差值。 由因果过滤系数捆绑的1美元准差值可以用平均平方错误标准来评价时间序列预测的质量 。