项目名称: 非线性偏微分方程的新型扩展混合元法高阶格式研究
项目编号: No.11301258
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 刘洋
作者单位: 内蒙古大学
项目金额: 22万元
中文摘要: 提出并研究新型扩展混合有限元方法,该方法的梯度所属的空间为简单的平方可积空间,代替了Chen的扩展混合有限元方法中的H(div)空间。研究二阶和四阶非线性偏微分方程的新型扩展混合有限元方法,证明弱解和有限元解的存在唯一性,建立新型扩展混合投影,分析未知纯量函数,梯度和流量的先验误差估计。在进行全离散先验误差分析时采用时间高阶格式离散和空间高次元逼近。 通过数值模拟结果验证提出新的方法理论的正确性。 重要的是新型扩展混合元方法发展了传统混合有限元理论。
中文关键词: 非线性偏微分方程;新混合元方法;稳定性;存在唯一性;误差估计
英文摘要: We propose and study a new expanded mixed finite element method, whose gradient belongs to the simple square integrable space instead of the H(div) space of Chen's expanded mixed finite element method. We study the new expanded mixed finite element method for second-order and fourth-order nonlinear partial differential equations, prove the existence and uniqueness for weak solution and finite element solution, introduce the new expanded mixed projection, analyze a priori error estimates for the scalar unknown, its gradient, and its flux. We discretize the time direction by high order schemes and appoximated the spatial direction by high-order finite element for fully discrete a priori error estimates. We provide some numerical results to verify the theoretical analysis of the proposed new method. What's more, the theories for the classical mixed finite element method are developed by the new expanded mixed finite element method.
英文关键词: Nonlinear partial differential equations;New mixed element methods;Stability;Existence and Uniqueness;Error estimates