We present a pipeline for parametric wireframe extraction from densely sampled point clouds. Our approach processes a scalar distance field that represents proximity to the nearest sharp feature curve. In intermediate stages, it detects corners, constructs curve segmentation, and builds a topological graph fitted to the wireframe. As an output, we produce parametric spline curves that can be edited and sampled arbitrarily. We evaluate our method on 50 complex 3D shapes and compare it to the novel deep learning-based technique, demonstrating superior quality.
翻译:我们提出了一个从密集采样点云中提取参数线条框架的管道。 我们的方法处理一个离最接近尖锐特征曲线的斜线距离场。 在中间阶段,它探测角,构造曲线截断,并绘制一个与铁丝框相配的地形图。 作为输出,我们生成了可任意编辑和取样的参数样条曲线。我们评估了我们50个复杂的3D形状的方法,并将其与新的深层学习技术进行比较,显示了高品质。