We consider statistical models arising from the common set of solutions to a sparse polynomial system with general coefficients. The maximum likelihood degree counts the number of critical points of the likelihood function restricted to the model. We prove the maximum likelihood degree of a sparse polynomial system is determined by its Newton polytopes and equals the mixed volume of a related Lagrange system of equations.
翻译:我们考虑由一套共同的解决方案产生的统计模型,这些模型可以用来解决具有一般系数的稀少的多元海洋系统。最大可能性度计算该模型所限定的概率功能的临界点数。我们证明稀有的多元海洋系统的最大可能性是由它的牛顿多面决定的,它等于一个相关的拉格朗等式系统的混合体积。