This paper is a continuation of the work presented in [Chertock et al., Math. Cli. Weather Forecast. 5, 1 (2019), 65--106]. We study uncertainty propagation in warm cloud dynamics of weakly compressible fluids. The mathematical model is governed by a multiscale system of PDEs in which the macroscopic fluid dynamics is described by a weakly compressible Navier-Stokes system and the microscopic cloud dynamics is modeled by a convection-diffusion-reaction system. In order to quantify uncertainties present in the system, we derive and implement a generalized polynomial chaos stochastic Galerkin method. Unlike the first part of this work, where we restricted our consideration to the partially stochastic case in which the uncertainties were only present in the cloud physics equations, we now study a fully random Navier-Stokes-cloud model in which we include randomness in the macroscopic fluid dynamics as well. We conduct a series of numerical experiments illustrating the accuracy and efficiency of the developed approach.
翻译:本文是[Chertock 等人, Math. Cli. 天气预报. 5, 1 (2019), 65--106] 所介绍工作的继续。我们研究了在微压缩液体的温暖云动态中的不确定性扩散。数学模型由多尺度的PDEs系统管理,在这个系统中,一个微缩压缩的Navier-Stokes系统描述大型流体动态,而微型云层动态则以一个对流-扩散-反应系统为模型。为了量化系统中存在的不确定性,我们制定并实施了一种普遍的多球混杂透析Galerkin方法。与这项工作的第一部分不同,我们把考虑范围限制在仅存在于云物理方程式中的部分混杂情况,我们现在研究一个完全随机的Navier-Stokes-cloud模型,其中我们也包括了宏观流体动态中的随机性。我们进行了一系列数字实验,说明发达方法的准确性和效率。