项目名称: 积分微分方程和反常扩散问题的高效谱方法

项目编号: No.11471274

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 许传炬

作者单位: 厦门大学

项目金额: 70万元

中文摘要: 积分微分方程和分数阶微分方程在物理、化学、生物、工程、自然界等许多领域有应用背景。这类方程有一个共同点,即都具有非局部算子。一方面,这一特点使之更适合用以描述具有记忆性质的材料行为,因此可以在一些复杂系统的建模中找到应用。另一方面,非局部算子的存在使得这类方程的理论研究和数值求解更为困难。本项目旨在研究一类积分微分方程和分数阶微分方程的基本性质和高阶算法设计。主要研究内容包括:1)研究几类积分方程和分数阶微分方程解的性质,特别是研究解的正则性,刻划解的奇性特征,为设计高阶算法提供理论支持;2)设计和分析Volterra型积分方程的谱/谱元法;3)考察几个分数阶偏微分方程初边值问题的变分形式和适定性理论,获得一些解的存在唯一性结果,为基于变分的算法设计搭建基础框架;4) 设计和分析复杂区域上时间-空间反常扩散方程的基于区域分解的有限元/谱元法, 并将之应用于一些具有实际背景的分数阶模型问题。

中文关键词: 谱方法;谱元法;积分方程;分数阶微分方程;收敛性分析

英文摘要: Integro-differential equations and fractional differential equations arise in many branches of science and nature covering physics, biology, chemistry, earth science, environmental science, and control theory etc. Theoretical and numerical investigations of these equations have been attracting the close attention of researchers. These equations share a common feature: they all contain non-local operators. On one side, this feature makes them more suitable for describing the behavior of materials with memory, which can be found in modeling many complex systems. On the other side, this feature makes the theoretical study and the numerical treatment of these equations more complicated than classical local problems. The main purpose of this project is to construct highly efficient numerical methods for a class of integro-differential equations and fractional differential equations. The goals of the project include: 1) investigate well-posedness of a family of Volterra integral equations, including existence, uniqueness, and regularity (singularity) of the solution etc.; 2) develop new spectral/spectral -element methods for solving a class of high-dimensional Volterra integral/ fractional PDEs; 3) investigate weak formulations and existence of weak solutions of a kind of fractional PDEs; 4) design and analyze high order numerical methods for time space abnormal diffusion equations, and apply them to some emerging applications in fluid dynamics and materials science, such as fractional Fokker-Planck equations, fractional cable equations, fractional Dias-Dutykh equations,and so on.

英文关键词: Spetrcal Methods;Spectral Element Methods;Integral Equations;Fractional Differential Equations;Convergence Analysis

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
153+阅读 · 2021年11月10日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
22+阅读 · 2021年4月10日
【硬核书】矩阵代数:统计学的理论、计算和应用,664页pdf
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
14+阅读 · 2022年2月14日
谈谈自动微分(Automatic Differentiation)
PaperWeekly
1+阅读 · 2022年1月3日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
16+阅读 · 2020年5月20日
小贴士
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
153+阅读 · 2021年11月10日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
22+阅读 · 2021年4月10日
【硬核书】矩阵代数:统计学的理论、计算和应用,664页pdf
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员