Osteoporosis is a common bone disease that increases the risk of bone fracture. Hip-fracture risk screening methods based on finite element analysis depend on segmented computed tomography (CT) images; however, current femur segmentation methods require manual delineations of large data sets. Here we propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT. Evaluation on a set of 1147 proximal femurs with ground truth segmentations demonstrates that our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.
翻译:骨质疏松是一种常见的骨骼疾病,增加了骨折的风险。基于有限元素分析的脊椎骨裂风险筛查方法取决于分解计算断层断层断层图像;然而,目前的股骨分解方法需要人工划定大型数据集。这里我们建议建立一个深度神经网络,以完全自动、准确和快速分割CT的近身骨骼。 对一组1147个预产卵和地面事实分层的评估表明,我们的方法适合进行臀部骨裂风险筛查,使我们更接近于临床上可行的选择,即对有风险的病人进行臀部骨裂易感性筛查。