项目名称: 与薛定鄂算子和多线性算子相关问题
项目编号: No.11271024
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 唐林
作者单位: 北京大学
项目金额: 50万元
中文摘要: 研究薛定谔算子和多线性算子的有界性及相关问题是最近十几年来国际上非常活跃的领域。本项目就是进一步研究这一方面问题。主要包括几个方面。首先,我们拟研究带非连续系数的散度和非散度薛定鄂方程解的适定性问题,这其中薛定鄂方程中的非负位势即包括属于逆H?lder类的又包括属于非逆H?lder类的。其次,我们拟建立和薛定鄂算子相关的加权Hardy 和加权BMO空间理论;同时考虑相关薛定鄂型算子在加权Hardy 和加权BMO空间有界性问题;另外,我们拟考虑散度型薛定谔谱乘子的加权有界性,这里我们考虑的权函数是非双倍权以及薛定鄂算子中的非负位势属于逆H?lder类。最后,我们拟研究多线性拟微分奇异积分算子的加权有界性问题,这里我们考虑的权函数是非双倍权。
中文关键词: 薛定谔算子;多线性算子;权函数;;
英文摘要: Some problems on schrodinger operators and mulitilinears have attracted much attention in the last decades. The aim of this object is to study these problems deeply, which includes several ways. Firstly, we will study the solvability of divergence and nondivergence Schr?dinger equations with dsicontinuous coeffiecients, the nonnegative potentials include some reverse Holder class and non reverse Holder class. Secondly, we will establish the weighted theory of Hardy spaces and BMO sapces assicilated with Schr?dinger operators; meanwhile, we will consider the boundedness of Schr?dinger operators on weighted Hardy spaces and weighted BMO spaces;in addition, we will study the weighted boundedness of spectral mulitiplier associated with diveregence Schr?dinger equations,where the nonnegative potentials belong to some reverse Holder class and the weights are nondouble. Finally, we will study the weighted boundedness for multilinear pseudodifferential singular integral operators, where the weights are double.
英文关键词: Schrodinger operator;mutilinear operator;weighted function;;