项目名称: 强弱型函数空间上的复合算子和等距表示理论研究
项目编号: No.11271293
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王茂发
作者单位: 武汉大学
项目金额: 60万元
中文摘要: 本项目着重研究几类强弱型函数空间上的复合算子和等距表示理论。目的在于运用位势理论、端点理论、对偶理论、Jordan代数理论和原子分解、半内积、可微范数及内插等技巧开辟一些适用于强弱型函数空间的新方法与新工具,进而研究强弱型函数空间的本性属性及其上复合算子的分析特征和等距算子的结构特征,揭示强弱型函数空间的本质差异性。它们是经典函数空间上相关理论的延伸和扩展。该项目属于算子理论与函数空间理论方面的交叉前沿课题。我们将交叉应用函数论中的实方法和复方法探讨泛函空间与算子理论中的一些重要问题,同时也以泛函空间与算子理论为工具研究调和分析中的热门问题。目前该领域中许多有待解决的问题在诸如不变子空间问题、重排不变函数空间、Banach空间几何和遍历理论等相关数学分支中具有重要理论意义和广泛应用价值。本项目的研究必将使经典理论更臻完善,同时也将丰富和推动泛函分析基本理论对函数空间理论的实质反馈。
中文关键词: 复合算子;函数空间;等距算子;紧差;拓扑结构
英文摘要: This project will study the theory of composition operators and representations of isometries on some strong and weak type function spaces. Our purpose is to exploit some new methods and tools, which are effective for some kinds of strong and weak type function spaces, by employing potential analysis, extreme point argument, Jordan algebra and dual space with some techniques of atomic decomposition, interpolation, semi-inner product and differentiable norm. We will focus on attacking the intrinsic properties of various strong and weak type function spaces and use them to give some characterizations of composition operators and structure forms of isometries, which reveal the essential differences of the function spaces involved. This project is an extension and expansion of the corresponding theory on classical function spaces. We will not only use real and complex methods to investigate some related problems in functional spaces and operator theory, but also solve some important problems in harmonic analysis in terms of knowledge from functional spaces and operator theory. Currently, there are lots of open problems in this field to be solved, which have important theoretical significance and wide application value in the invariant subspace problem, rearrangement invariant function spaces, Banach space geometry a
英文关键词: composition operator;function space;isometry;compact difference;topological structure