In this paper, we propose a pipeline for real-time video denoising with low runtime cost and high perceptual quality. The vast majority of denoising studies focus on image denoising. However, a minority of research works focusing on video denoising do so with higher performance costs to obtain higher quality while maintaining temporal coherence. The approach we introduce in this paper leverages the advantages of both image and video-denoising architectures. Our pipeline first denoises the keyframes or one-fifth of the frames using HI-GAN blind image denoising architecture. Then, the remaining four-fifths of the noisy frames and the denoised keyframe data are fed into the FastDVDnet video denoising model. The final output is rendered in the user's display in real-time. The combination of these low-latency neural network architectures produces real-time denoising with high perceptual quality with applications in video conferencing and other real-time media streaming systems. A custom noise detector analyzer provides real-time feedback to adapt the weights and improve the models' output.
翻译:在本文中,我们建议建立一个实时视频脱色管道,使用低运行成本和高感官质量的实时视频脱色管道。绝大多数脱色研究侧重于图像脱色。然而,少数侧重于视频脱色的研究工作以较高的性能成本获得更高的质量,同时保持时间一致性。我们在本文中采用的方法利用图像和视频隐蔽结构的优势。我们的管道首先使用 HI-GAN 盲图像脱色结构将键盘或五分之一的框框封住。然后,其余五分之四的噪音框架和脱色键盘数据被输入Fast DVDnet 视频脱色模型。最终产出由用户实时显示。这些低延时神经网络结构的组合产生了实时脱色功能,高感官质量与视频会议和其他实时媒体流系统的应用相结合。定制噪音检测器提供实时反馈,以调整重量和改进模型产出。