Prevalent predictive coding-based video compression methods rely on a heavy encoder to reduce temporal redundancy, which makes it challenging to deploy them on resource-constrained devices. Since the 1970s, distributed source coding theory has indicated that independent encoding and joint decoding with side information (SI) can achieve high-efficient compression of correlated sources. This has inspired a distributed coding architecture aiming at reducing the encoding complexity. However, traditional distributed coding methods suffer from a substantial performance gap to predictive coding ones. Inspired by the great success of learning-based compression, we propose the first end-to-end distributed deep video compression framework to improve the rate-distortion performance. A key ingredient is an effective SI generation module at the decoder, which helps to effectively exploit inter-frame correlations without computation-intensive encoder-side motion estimation and compensation. Experiments show that our method significantly outperforms conventional distributed video coding and H.264. Meanwhile, it enjoys 6-7x encoding speedup against DVC [1] with comparable compression performance. Code is released at https://github.com/Xinjie-Q/Distributed-DVC.
翻译:普遍应用于视频压缩的基于预测编码的方法需要一个大量计算的编码器来减少时域冗余,这使得难以将其部署到资源受限的设备上。自20世纪70年代以来,分布式源编码理论表明,利用独立编码和具有副信息的联合解码可以实现高效压缩相关源。这启发了一种旨在减少编码复杂度的分布式编码体系结构。 然而,传统的分布式编码方法与预测编码方法之间存在显著的性能差距。受到学习为基础的压缩的巨大成功的启发,我们提出了第一个端到端的分布式深度视频压缩框架,以改进速率失真性能。其中一个关键要素是解码器中的有效SI生成模块,它有助于在不需要计算密集型的编码器侧运动估计和补偿的情况下有效利用帧间相关性。实验表明,我们的方法显著优于传统分布式视频编码和H.264。 同时,与DVC相比,它获得了6-7倍的编码加速并具有相当的压缩性能。 代码发布在 https://github.com/Xinjie-Q/Distributed-DVC。