Metocean extremes often vary systematically with covariates such as direction and season. In this work, we present non-stationary models for the size and rate of occurrence of peaks over threshold of metocean variables with respect to one- or two-dimensional covariates. The variation of model parameters with covariate is described using a piecewise-linear function in one or two dimensions defined with respect to pre-specified node locations on the covariate domain. Parameter roughness is regulated to provide optimal predictive performance, assessed using cross-validation, within a penalised likelihood framework for inference. Parameter uncertainty is quantified using bootstrap resampling. The models are used to estimate extremes of storm peak significant wave height with respect to direction and season for a site in the northern North Sea. A covariate representation based on a triangulation of the direction-season domain with six nodes gives good predictive performance. The penalised piecewise-linear framework provides a flexible representation of covariate effects at reasonable computational cost.
翻译:在这项工作中,我们提出了关于一或二维共变数中一或二维共变数中超过远洋变量临界值的峰值大小和发生率的非静止模型。用一个或两个维度来说明共变数的模型参数的变异,使用一个或两个维度的细微线函数来说明共变数,该参数的变异性在与共变数域中预先指定的节点位置有关的一个或两个维度上界定一个或两个维度。对参数粗度进行调控,以便在一个惩罚性的推断可能性框架内,利用交叉校验进行评估,以提供最佳的预测性能。参数的不确定性用靴子区取样来量化。这些模型用来估计北海某一地点方向和季节的暴风峰显著浪高的极端性。根据方向-海平线域的三角图和六个节点的共变式表示,可以很好地预测性能。惩罚性的单向线框架以合理的计算成本灵活地表示共变效应。