The success of large-scale models in recent years has increased the importance of statistical models with numerous parameters. Several studies have analyzed over-parameterized linear models with high-dimensional data that may not be sparse; however, existing results depend on the independent setting of samples. In this study, we analyze a linear regression model with dependent time series data under over-parameterization settings. We consider an estimator via interpolation and developed a theory for excess risk of the estimator under multiple dependence types. This theory can treat infinite-dimensional data without sparsity and handle long-memory processes in a unified manner. Moreover, we bound the risk in our theory via the integrated covariance and nondegeneracy of autocorrelation matrices. The results show that the convergence rate of risks with short-memory processes is identical to that of cases with independent data, while long-memory processes slow the convergence rate. We also present several examples of specific dependent processes that can be applied to our setting.
翻译:近年来,大型模型的成功提高了具有众多参数的统计模型的重要性。一些研究分析了多参数线性模型和高维数据,这些数据可能并不稀少;然而,现有结果取决于样本的独立设置。在本研究中,我们分析了一个线性回归模型,在超参数设置下有依赖的时间序列数据。我们考虑通过内插估计,并开发了多依赖类型下测算员过度风险的理论。这一理论可以处理无孔径的无限维数据,并以统一的方式处理长期的模拟过程。此外,我们通过自动关系矩阵的综合共变和不变性将风险约束在我们的理论中。结果显示,与短期数据过程的风险趋同率与与独立数据案例的趋同率相同,而长期模拟过程减缓了合并速度。我们还举了几个可以适用于我们环境的具体依赖过程的例子。