The four-parameter generalized beta distribution of the second kind (GBII) has been proposed for modelling insurance losses with heavy-tailed features. The aim of this paper is to present a parametric composite GBII regression modelling by splicing two GBII distributions using mode matching method. It is designed for simultaneous modeling of small and large claims and capturing the policyholder heterogeneity by introducing the covariates into the location parameter. In such cases, the threshold that splits two GBII distributions varies across individuals policyholders based on their risk features. The proposed regression modelling also contains a wide range of insurance loss distributions as the head and the tail respectively and provides the close-formed expressions for parameter estimation and model prediction. A simulation study is conducted to show the accuracy of the proposed estimation method and the flexibility of the regressions. Some illustrations of the applicability of the new class of distributions and regressions are provided with a Danish fire losses data set and a Chinese medical insurance claims data set, comparing with the results of competing models from the literature.
翻译:为模拟具有严重尾部特征的保险损失,提议采用第二类通用乙型(GBII)4参数分布图,以模拟具有重尾部特征的保险损失,本文件的目的是通过使用模式匹配方法拼凑两种GBII分布图,提出一种参数合成GBII回归模型,目的是同时模拟小型和大型索赔的模型,通过将共差引入位置参数,捕捉投保人的异质性;在这种情况下,根据个人的风险特征,将两种GBII分布分为不同的阈值,拟议的回归模型还包含广泛的保险损失分布图,分别包括头部和尾部,并提供了参数估计和模型预测的严密表达方式;进行了模拟研究,以显示拟议估算方法的准确性和回归的灵活性;用丹麦的火损失数据集和中国医疗保险索赔数据集比较了新类别分布和回归的可适用性,并提供了丹麦的火灾损失数据集和中国的医疗保险索赔数据集,与文献中相互竞争的模型相比较。