There has been a recent surge in statistical methods for handling the lack of adequate positivity when using inverse probability weighting. Alongside these nascent developments, a number of questions have been posed about the goals and intent of these methods: to infer causality, what are they really estimating and what are their target populations? Because causal inference is inherently a missing data problem, the assignment mechanism -- how participants are represented in their respective treatment groups and how they receive their treatments -- plays an important role in assessing causality. In this paper, we contribute to the discussion by highlighting specific characteristics of the equipoise estimators, i.e., overlap weights (OW) matching weights (MW) and entropy weights (EW) methods, which help answer these questions and contrast them with the behavior of the inverse probability weights (IPW) method. We discuss three distinct potential motives for weighting under the lack of adequate positivity when estimating causal effects: (1) What separates OW, MW, and EW from IPW trimming or truncation? (2) What fundamentally distinguishes the estimand of the IPW, i.e., average treatment effect (ATE) from the OW, MW, and EW estimands (resp. average treatment effect on the overlap (ATO), the matching (ATM), and entropy (ATEN))? (3) When should we expect similar results for these estimands, even if the treatment effect is heterogeneous? Our findings are illustrated through a number of Monte-Carlo simulation studies and a data example on healthcare expenditure.
翻译:最近,在使用反概率加权时,处理缺乏适当假设的统计方法出现急剧上升。除了这些新的发展外,还就这些方法的目标和意图提出了一些问题:推断因果关系、它们真正估计的是什么以及它们的目标人口是什么?由于因果关系推论本身就是一个缺失的数据问题,分配机制 -- -- 参与者在各自治疗群体中如何代表以及他们如何得到治疗 -- -- 在评估因果关系方面起着重要作用。在本文件中,我们通过突出设备估量器的具体特点,即重(OW)与重量(MW)和重量(EW)相匹配的重(OW)和引力重量(EW)方法的重叠(WM)和重量(EW)的比重(WA,i)和英特(IM)的比重(OF)的比重(OW,i)与平均处理结果(OF)的比重(OW, MW, EW, 和EW的比值(O)的比值(O)的比重(O,i)和比值(OAT(O)的比值(O-I)的比值结果(我们的平均和比值(OAT)的比值(O)的比值和比值(OAT)的比值结果(我们的平均)的比值、比值(我们)的比值和比值(我们)的比值(OT)的比值(我们)的比值的比值(我们)的比值结果的比值、比值和比值(我们)的比值(我们)的比值和比值(我们)的比值结果的比值(我们的比值(OOW)的比值(OT)的比值(OT)的比值和比值(我们的比值(我们的比值(OT)的比值、比值)(我们的比值)(我们的比))的比)的比)的比、比值、比值、比值、比值(我们的比值、比值、比值、比值、比值、比值、比值、比值和比值、比值、比值)的比值的比值)的比值的比值、比值、比值、比值、比值、比值)的比值、比值(我们的比值、比