Unevenly spaced samples from a periodic function are common in signal processing and can often be viewed as a perturbed equally spaced grid. In this paper, we analyze how the uneven distribution of the samples impacts the quality of interpolation and quadrature. Starting with equally spaced nodes on $[-\pi,\pi)$ with grid spacing $h$, suppose the unevenly spaced nodes are obtained by perturbing each uniform node by an arbitrary amount $\leq \alpha h$, where $0 \leq \alpha < 1/2$ is a fixed constant. We prove a discrete version of the Kadec-1/4 theorem, which states that the nonuniform discrete Fourier transform associated with perturbed nodes has a bounded condition number independent of $h$, for any $\alpha < 1/4$. We go on to show that unevenly spaced quadrature rules converge for all continuous functions and interpolants converge uniformly for all differentiable functions whose derivative has bounded variation when $0 \leq \alpha < 1/4$. Though, quadrature rules at perturbed nodes can have negative weights for any $\alpha > 0$, we provide a bound on the absolute sum of the quadrature weights. Therefore, we show that perturbed equally spaced grids with small $\alpha$ can be used without numerical woes. While our proof techniques work primarily when $0 \leq \alpha < 1/4$, we show that a small amount of oversampling extends our results to the case when $1/4 \leq \alpha < 1/2$.


翻译:信号处理中常见于周期函数的不均位样本, 并且通常可以被视为一个被扰动的同样空格。 在本文中, 我们分析样本分布不均如何影响内插和二次曲线的质量。 从 $[\\ pi,\ pi) $ 上以网格间距为单位的不均位节点开始, 假设每个统一的节点都有不均位点, 任意地以 $\leq\ alpha h$ 获得不均位点, 其中, $0\leq\ alpha < 1/2$ 是固定不变的固定不变的。 我们证明, Kade- 1/ 4 orem 是一个离异的版本。 这表明, 与 $ $- pi- pi,\ pi- pi) 相连接的不均位断开的Fouriererfierer变换, 条件为$, 任何 $ 1/4 q- deal deal deal deal deal ral deal deal ral ral deal ral deal ral rals. 。 当我们使用了正 rqd a cas a deal deal deal deal deal deal deal deal ral deal destrut rres a ral deal deal debs a pres a rbs a cust cust rences a rbs a cust rmalts时, ral rm rmats, rancets, 。 。 rence a rences a rbut rbs a 。 。 。 rqd a 。 。 。 。 subs a c de rqd a rbs a c de rbs a rbs a c de rbs a a cut a cut a ral a cut a cut a cut a cut a ral de r le a case a cut de a cut a a r r) su de a de a r) r) r) su a a c a c a c a c a c a c a c

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员