While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the \textsc{LeadingOnes} and \textsc{Jump} benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size~$m$.%
翻译:虽然对演化算法(EAs)的理论分析在过去25年中在假Boolean优化问题上取得了重大进展,但对于EAs如何解决基于变异性的问题,只有零星的理论结果存在。为了克服缺乏基于排列的基准问题,我们提出了一个将经典假Boolean基准转换成一套变异基准的基准的一般方法。我们随后对Scharnow、Tinnefeld和Wegener(2004)提议的基于变异性计算$(1+1)的EA进行了严格的运行时间分析。为此,我们还注意到,在\ textscc{LeadingOnes}和基准中,EAs如何解决基于变异性的问题,只有零星的理论结果。为,与位字符串不同的是,我们提出将典型的假字框基准转换成另外1美元($+1美元),还有Scharm(Tegma) 的精确周期结构。我们还注意到,在轨迹上,在跳动量中, 跳动的字符会减少一个更精确的大小。我们观察,在跳动的操作器上, 跳动的字符会显示,最后显示, 重的操作的大小。