In this paper, we propose RiemannianFlow, a deep generative model that allows robots to learn complex and stable skills evolving on Riemannian manifolds. Examples of Riemannian data in robotics include stiffness (symmetric and positive definite matrix (SPD)) and orientation (unit quaternion (UQ)) trajectories. For Riemannian data, unlike Euclidean ones, different dimensions are interconnected by geometric constraints which have to be properly considered during the learning process. Using distance preserving mappings, our approach transfers the data between their original manifold and the tangent space, realizing the removing and re-fulfilling of the geometric constraints. This allows to extend existing frameworks to learn stable skills from Riemannian data while guaranteeing the stability of the learning results. The ability of RiemannianFlow to learn various data patterns and the stability of the learned models are experimentally shown on a dataset of manifold motions. Further, we analyze from different perspectives the robustness of the model with different hyperparameter combinations. It turns out that the model's stability is not affected by different hyperparameters, a proper combination of the hyperparameters leads to a significant improvement (up to 27.6%) of the model accuracy. Last, we show the effectiveness of RiemannianFlow in a real peg-in-hole (PiH) task where we need to generate stable and consistent position and orientation trajectories for the robot starting from different initial poses.
翻译:在本文中, 我们提议 Riemannian Flow, 这是一种深层次的基因模型, 使机器人能够学习在Riemannian 方块上演进的复杂和稳定技能。 机器人中里曼尼人数据的例子包括僵硬( 对称和正确定矩阵( SPD)) 和方向( emple kynion (UQ) ) 轨迹。 对于里曼尼人数据, 不同于Euclidean (UQQ), 不同的维维度因在学习过程中必须适当考虑的几何限制而相互连接。 我们使用远程保护定位, 我们的方法将数据传输到其原始的方块和正色空间之间, 实现对几何限制的初始去除和再填充。 这可以扩展现有框架, 从里曼尼基数据中学习稳定技能, 同时保证学习结果的稳定性。 里曼菲洛( Unitemann Flow) 的能力在多动的数据集上被实验显示。 此外, 我们从不同的角度分析模型的坚固性与超光度组合。 它从模型的初始位置, 从不同的模型的初始位置到我们从不同的超高分辨率到高分辨率, 将显示一个不同的超偏差的模型的精确度。