We present a unified probabilistic model that learns a representative set of discrete vehicle actions and predicts the probability of each action given a particular scenario. Our model also enables us to estimate the distribution over continuous trajectories conditioned on a scenario, representing what each discrete action would look like if executed in that scenario. While our primary objective is to learn representative action sets, these capabilities combine to produce accurate multimodal trajectory predictions as a byproduct. Although our learned action representations closely resemble semantically meaningful categories (e.g., "go straight", "turn left", etc.), our method is entirely self-supervised and does not utilize any manually generated labels or categories. Our method builds upon recent advances in variational inference and deep unsupervised clustering, resulting in full distribution estimates based on deterministic model evaluations.
翻译:我们提出一个统一的概率模型,以学习一组具有代表性的离散车辆动作,并预测每个行动在特定情况下的概率。我们的模型还使我们能够估计以某种假设情景为条件的连续轨迹的分布,代表每个离散行动在这种假设情景下执行时的外观。虽然我们的首要目标是学习具有代表性的成套行动,但这些能力作为一个副产品综合得出准确的多式联运轨迹预测。虽然我们所学的行动表现与具有意义的语义类别(如“直行 ” 、“左转 ” 等)非常相似,但我们的方法完全是自我监督的,不使用任何手工生成的标签或类别。我们的方法基于最近在变异推论和深度不受监督的集群方面取得的进步,导致基于确定性模型评估的全面分布估计。