Data collected from wearable devices and smartphones can shed light on an individual's pattern of behavioral and circadian routine. Phone use can be modeled as alternating event process, between the state of active use and the state of being idle. Markov chains and alternating recurrent event models are commonly used to model state transitions in cases such as these, and the incorporation of random effects can be used to introduce diurnal effects. While state labels can be derived prior to modeling dynamics, this approach omits informative regression covariates that can influence state memberships. We instead propose an alternating recurrent event proportional hazards (PH) regression to model the transitions between latent states. We propose an Expectation-Maximization (EM) algorithm for imputing latent state labels and estimating regression parameters. We show that our E-step simplifies to the hidden Markov model (HMM) forward-backward algorithm, allowing us to recover a HMM with logistic regression transition probabilities. In addition, we show that PH modeling of discrete-time transitions implicitly penalizes the logistic regression likelihood and results in shrinkage estimators for the relative risk. We derive asymptotic distributions for our model parameter estimates and compare our approach against competing methods through simulation as well as in a digital phenotyping study that followed smartphone use in a cohort of adolescents with mood disorders.
翻译:从磨损装置和智能手机中收集的数据可以揭示个人的行为和环状常规模式。 电话使用可以建模为交替事件过程, 从积极使用状态到闲置状态之间的交替事件过程。 Markov 链条和交替事件模式通常用于模拟此类情况下的状态过渡, 而随机效应的结合可以用来引入二极效应。 虽然在模拟动态之前可以得出国家标签, 但这种方法可以省略影响州会会员身份的知情回归共变。 我们提议以交替的经常性事件按比例危害( PH) 回归为模式, 以模拟潜伏状态之间的过渡。 我们提议了估算潜在状态标签和估计回归参数的预期- 最大化算法。 我们表明,我们的E步骤会简化到隐藏的Markov 模型(HMM) 前向后方算法, 使我们能够用物流回归过渡的概率恢复 HMMIC 。 此外, 我们表示, 离散时间过渡模式(PH) 的模型会以隐含性回归可能性和结果来模拟智能州际关系分析模型, 将我们作为模拟模型分析的模型分析模型分析方法, 模拟分析分析的模型的模型分析分析分析中, 分析分析中, 分析分析分析分析中, 分析分析分析分析分析中, 分析分析分析分析分析分析中,, 分析分析中的分析分析分析中的分析分析中的分析分析分析分析分析中的分析分析分析中的分析分析分析分析分析中的方法,, 分析分析。