项目名称: 组合学和概率论中的单峰型问题研究
项目编号: No.11301069
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 苏循团
作者单位: 曲阜师范大学
项目金额: 22万元
中文摘要: 单峰型问题是组合学和概率论等多个数学分支中最基本的问题之一,并在统计力学、计算机科学、经济学等学科中有广泛的应用。组合学与概率论的交叉领域是当今的数学研究热点,其中的概率方法是组合学研究中强有力的工具。而将单峰型问题作为组合学和概率论的交叉点来研究尚处于初始阶段。本项目旨在以概率方法研究组合学中的单峰型问题。本项目的研究内容主要包括: 研究多项式系数组成的三角中的各种单峰型性质;研究高维Narayana数的单峰性和PF性质;研究栅栏偏序集的序理想格的秩数序列的单峰性;研究关于随机变量之和保持对数凹性的逆问题。本项目从方法上为单峰型问题的研究提供了新途径。
中文关键词: 单峰性;卷积;格路;封闭流;对称性
英文摘要: Unimodality problems are one of the most fundamental topics in combinatorics, probability theory and other branches. They have been widely applied in statistics mechanics, computer science and economics. There are many active areas between combinatorics and probability theory. Probabilistic methods are a very powerful tool in combinatorics. But unimodality problems have not received enough study as a conjunction between combinatorics and probability theory. The project focuses on the applications of probabilistic methods to unimodality problems in combinatorics. The project includes the following issues: (i) the unimodality problems in the triangular arrays of multinomial coefficients; (ii) the unimodality and PF property of high dimensional Narayana numbers; (iii) the unimodality of the rank sequence of the lattice of order ideals of fences. (iv) the inverse problems related to log-concavity of the sum of two independent random variables. The project can provide a new approach to unimodality problems.
英文关键词: unimodality;convolution;lattice paths;closed flows;symmetry