Mean field theory has provided theoretical insights into various algorithms by letting the problem size tend to infinity. We argue that the applications of mean-field theory go beyond theoretical insights as it can inspire the design of practical algorithms. Leveraging mean-field analyses in physics, we propose a novel algorithm for sparse measure recovery. For sparse measures over $\mathbb{R}$, we propose a polynomial-time recovery method from Fourier moments that improves upon convex relaxation methods in a specific parameter regime; then, we demonstrate the application of our results for the optimization of particular two-dimensional, single-layer neural networks in realizable settings.
翻译:平均场理论通过让问题大小倾向于无限化,为各种算法提供了理论洞察力。 我们争辩说, 平均场理论的应用超越了理论洞察力, 因为它可以激励实际算法的设计。 利用物理中的平均场分析, 我们为稀有度量恢复提出了一个新颖的算法。 对于超过$\mathb{R}$的稀疏度测量, 我们建议了一种从 Fourier 片刻开始的多米时间恢复方法, 该方法在特定的参数系统中改进了 convex 放松方法; 然后, 我们演示了我们应用结果在可实现的环境中优化特定的二维、 单层神经网络。