Variational Autoencoders (VAEs) were originally motivated (Kingma & Welling, 2014) as probabilistic generative models in which one performs approximate Bayesian inference. The proposal of $\beta$-VAEs (Higgins et al., 2017) breaks this interpretation and generalizes VAEs to application domains beyond generative modeling (e.g., representation learning, clustering, or lossy data compression) by introducing an objective function that allows practitioners to trade off between the information content ("bit rate") of the latent representation and the distortion of reconstructed data (Alemi et al., 2018). In this paper, we reconsider this rate/distortion trade-off in the context of hierarchical VAEs, i.e., VAEs with more than one layer of latent variables. We identify a general class of inference models for which one can split the rate into contributions from each layer, which can then be tuned independently. We derive theoretical bounds on the performance of downstream tasks as functions of the individual layers' rates and verify our theoretical findings in large-scale experiments. Our results provide guidance for practitioners on which region in rate-space to target for a given application.
翻译:变异自动编码器(VAEs)最初的动机是(Kingma & Welling,2014年),作为进行贝叶斯推断的概率性遗传模型(Bingma & Welling,2014年),最初的动机是变化性自动编码器(VAEs),最初的动机是(Kingma & Welling,2014年),在这种模型中,人们可以进行贝塔$-VAEs(Higgins等人,2017年)的建议打破了这种解释,并将VAEs(Higgins等人,2017年)的通用到基因模型以外的应用领域(如代表性学习、集群或丢失数据压缩),方法是引入一种客观功能,使从业人员能够将潜在代表和变形数据(Alemi等人,2018年)的信息内容(“比特率”)在信息内容(“比特率”)之间进行交换。在本文中,我们重新考虑了这一比率/变异性交易率/变异性交易,即在等级VAEs,即具有超过一层潜在变异变异变数的变数层的变量。我们对区域进行大规模实验的理论性试验的结果。我们确定了一个总的推算模型模型模型模型。