In this work, we propose a mutual information (MI) based unsupervised domain adaptation (UDA) method for the cross-domain nuclei segmentation. Nuclei vary substantially in structure and appearances across different cancer types, leading to a drop in performance of deep learning models when trained on one cancer type and tested on another. This domain shift becomes even more critical as accurate segmentation and quantification of nuclei is an essential histopathology task for the diagnosis/ prognosis of patients and annotating nuclei at the pixel level for new cancer types demands extensive effort by medical experts. To address this problem, we maximize the MI between labeled source cancer type data and unlabeled target cancer type data for transferring nuclei segmentation knowledge across domains. We use the Jensen-Shanon divergence bound, requiring only one negative pair per positive pair for MI maximization. We evaluate our set-up for multiple modeling frameworks and on different datasets comprising of over 20 cancer-type domain shifts and demonstrate competitive performance. All the recently proposed approaches consist of multiple components for improving the domain adaptation, whereas our proposed module is light and can be easily incorporated into other methods (Implementation: https://github.com/YashSharma/MaNi ).
翻译:在这项工作中,我们提议了一种基于无监督的跨域核心部分的相互信息适应(MI)法(UDA)法(UDA),用于跨域外核部分。Nuclei在不同癌症类型的结构和外观上差异很大,导致深学习模式在就一种癌症类型进行培训并在另一个癌症类型进行测试时的性能下降。这一领域转变变得更加关键,因为准确的分解和核子量化是诊断/诊断病人和预测新癌症类型等离子体层面的核心病理学的一个基本任务,并且说明新癌症类型的核素需要医学专家作出广泛的努力。为了解决这个问题,我们尽量扩大标签来源癌症类型数据和无标签的癌症类型数据之间的MI,以传播跨域的核分解知识。我们使用Jensen-Shanon差异捆绑在一起,只需要每对正对一对负对核子进行MI最大化。我们评估了多重模型框架的设置和由20多个癌症类型域变化组成的不同数据集,并展示了竞争性的绩效。最近提出的所有方法都包含改进域适应的多个组成部分,而我们提议的模块/Mammamasmam/comm可以轻易纳入域适应方法。