LibRec 精选:推荐系统的常用数据集

2019 年 2 月 15 日 LibRec智能推荐

LibRec 精选

LibRec智能推荐 第 25 期(至2019.2.14),更新 13 篇精彩讨论内容。


“你一走,这年就算过完了 ...”


1

【数据集】由Dr. Julian McAuley整理的推荐系统的常用数据集,链接: https://cseweb.ucsd.edu/~jmcauley/datasets.html,收集的数据集包含以下特性:

+ user/item interactions

+ star ratings

+ timestamps

+ product reviews

+ social networks

+ item-to-item relationships (e.g., copurchase)

+ product images

+ price, brand, and category information

+ GPS data 

+ other metadata

2

【技术博客】知识图谱在AirBnb中的应用,链接:https://medium.com/airbnb-engineering/contextualizing-airbnb-by-building-knowledge-graph-b7077e268d5a

3

【技术博客】用Keras一步步地构建啤酒推荐系统,链接:https://medium.com/data-from-the-trenches/deep-beers-playing-with-deep-recommendation-engines-using-keras-part-1-1efc4779568f?hss_channel=tw-816825631





1. Managing Popularity Bias in Recommender Systems with Personalized Re-ranking

Himan Abdollahpouri, Robin Burke, Bamshad Mobasher

https://arxiv.org/abs/1901.07555v1

Many recommender systems suffer from popularity bias: popular items are recommended frequently while less popular, niche products, are recommended rarely or not at all. In this paper, we introduce a personalized diversification re-ranking approach to increase the representation of less popular items in recommendations while maintaining acceptable recommendation accuracy. We show that our approach is capable of managing popularity bias more effectively, compared with an existing method based on regularization.


2. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, Minyi Guo

https://arxiv.org/abs/1901.08907v1

We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph.


3. Thompson Sampling for a Fatigue-aware Online Recommendation System

Yunjuan Wang, Theja Tulabandhula

https://arxiv.org/abs/1901.07734v1

In this paper we consider an online recommendation setting, where a platform recommends a sequence of items to its users at every time period. The users respond by selecting one of the items recommended or abandon the platform due to fatigue from seeing less useful items. We propose a new Thompson sampling based algorithm with expected regret that is polynomial in the number of items in this combinatorial setting, and performs extremely well in practice.


4. AspeRa: Aspect-based Rating Prediction Model

Sergey I. Nikolenko, Elena Tutubalina, Valentin Malykh, Ilya Shenbin, Anton Alekseev

https://arxiv.org/abs/1901.07829v1

We propose a novel end-to-end Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items and at the same time discovers coherent aspects of reviews that can be used to explain predictions or profile users. The AspeRa model uses max-margin losses for joint item and user embedding learning and a dual-headed architecture; it significantly outperforms recently proposed state-of-the-art models such as DeepCoNN, HFT, NARRE, and TransRev on two real world data sets of user reviews. With qualitative examination of the aspects and quantitative evaluation of rating prediction models based on these aspects, we show how aspect embeddings can be used in a recommender system.


5. When Collaborative Filtering Meets Reinforcement Learning

Yu Lei, Wenjie Li

https://arxiv.org/abs/1902.00715v1

To address the problem, we develop a novel and effective approach, named CFRL, which seamlessly integrates the ideas of both collaborative filtering (CF) and reinforcement learning (RL). Further, to achieve collaborative recommendations for the entire user community, we propose a novel CF-based MDP by encoding the states of all users into a shared latent vector space. Finally, we propose an effective Q-network learning method to learn the agent's optimal policy based on the CF-based MDP.


6. RELINE: Point-of-Interest Recommendations using Multiple Network  Embeddings

Yannis Manolopoulos, Apostolos N. Papadopoulos, Pavlos Kefalas, Giannis Christoforidis

https://arxiv.org/abs/1902.00773v1

The exploitation of Points-of-Interest (POIs) recommendation by existing models is inadequate due to the sparsity and the cold start problems. In this work, we investigate these problems and present a unified model that jointly learns users and POI dynamics. Our proposal is termed RELINE (REcommendations with muLtIple Network Embeddings).


7. Value-aware Recommendation based on Reinforced Profit Maximization in  E-commerce Systems

Changhua Pei, Xinru Yang, Qing Cui, Fei Sun, Xiao Lin, Wenwu Ou, Peng Jiang, Yongfeng Zhang

https://arxiv.org/abs/1902.00851v1

Traditional recommendation targets such as rating prediction and top-$k$ recommendation are not directly related to this goal. In this work, we blend the fundamental concepts in online advertising and micro-economics into personalized recommendation for profit maximization. Specifically, we propose value-aware recommendation based on reinforcement learning, which directly optimizes the economic value of candidate items to generate the recommendation list.


8. Recommender Systems Notation: Proposed Common Notation for Teaching and  Research

Joseph A. Konstan, Michael D. Ekstrand

https://arxiv.org/abs/1902.01348v1

In the course of years of teaching and research on recommender systems, we have seen the val-ue in adopting a consistent notation across our work. This has been particularly highlighted in our development of the Recommender Systems MOOC on Coursera (Konstan et al. We present this in hope that it will be useful to others writing and teaching about recommender systems.


9. Heterogeneous Edge Embeddings for Friend Recommendation

Debdoot Mukherjee, Srishti Gupta, Janu Verma, Tanmoy Chakraborty

https://arxiv.org/abs/1902.03124v1

We propose a friend recommendation system (an application of link prediction) using edge embeddings on social networks. Existing network embedding techniques do not leverage signals from different edge types and thus perform inadequately on link prediction in such networks. We evaluate our model on a real-world, active social network where this system is deployed for friend recommendation for millions of users.


10. Understanding Chat Messages for Sticker Recommendation in Hike Messenger

Abhishek Laddha, Mohamed Hanoosh, Debdoot Mukherjee

https://arxiv.org/abs/1902.02704v1

However, discovering the right sticker at the right time in a chat from a large and ever expanding pool of stickers can be cumbersome. In this paper, we describe a system for recommending stickers as users chat based on what the user is typing and the conversational context. We experiment with different approaches to train embedding for chat messages and study their efficacy in learning similar dense representations for messages that have the same intent.




登录查看更多
17

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
6+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2018年1月31日
VIP会员
相关VIP内容
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
Top
微信扫码咨询专知VIP会员