Searching on bipartite graphs is basal and versatile to many real-world Web applications, e.g., online recommendation, database retrieval, and query-document searching. Given a query node, the conventional approaches rely on the similarity matching with the vectorized node embeddings in the continuous Euclidean space. To efficiently manage intensive similarity computation, developing hashing techniques for graph structured data has recently become an emerging research direction. Despite the retrieval efficiency in Hamming space, prior work is however confronted with catastrophic performance decay. In this work, we investigate the problem of hashing with Graph Convolutional Network on bipartite graphs for effective Top-N search. We propose an end-to-end Bipartite Graph Convolutional Hashing approach, namely BGCH, which consists of three novel and effective modules: (1) adaptive graph convolutional hashing, (2) latent feature dispersion, and (3) Fourier serialized gradient estimation. Specifically, the former two modules achieve the substantial retention of the structural information against the inevitable information loss in hash encoding; the last module develops Fourier Series decomposition to the hashing function in the frequency domain mainly for more accurate gradient estimation. The extensive experiments on six real-world datasets not only show the performance superiority over the competing hashing-based counterparts, but also demonstrate the effectiveness of all proposed model components contained therein.
翻译:双分图搜索是许多实际Web应用程序(例如在线推荐、数据库检索和查询-文档搜索)的基础且通用的方法。传统方法依赖于与连续欧几里得空间中的节点嵌入进行相似性匹配。为了有效地管理相似性计算,近年来发展了图结构数据的哈希技术。尽管哈希检索在哈明空间中是高效的,但前期工作的性能衰减是无法避免的。本文探讨了针对双分图进行哈希处理的图卷积网络方法,以实现高效的Top-N搜索。我们提出了一种端到端的双分图卷积哈希方法(BGCH),其中包括三个新颖而有效的模块:(1)自适应图卷积哈希,(2)潜在特征传播,和(3)傅里叶序列化梯度估计。具体而言,前两个模块实现了结构信息的实质性保留,以对哈希编码中不可避免的信息丢失进行抵消;最后一个模块则在频域中对哈希函数进行傅里叶系列分解,主要是为了更准确的梯度估计。对六个实际数据集的广泛实验不仅展示了与竞争基于哈希的对手相比的性能优越性,而且还证明了其中所包含的所有提出的模型组件的有效性。