国际机器学习会议(ICML)是研究人员发表他们最好的工作的主要会议之一。ICML 2022充满了数百篇论文和无数专门研究图表的研讨会。我们在图ML中分享了最热门的研究领域🔥的概述。

  • Generation: Denoising Diffusion Is All You Need
  • Graph Transformers
  • Theory and Expressive GNNs
  • Spectral GNNs
  • Explainable GNNs
  • Graph Augmentation: Beyond Edge Dropout
  • Algorithmic Reasoning and Graph Algorithms
  • Knowledge Graph Reasoning
  • Computational Biology: Molecular Linking, Protein Binding, Property Prediction
  • Cool Graph Applications
成为VIP会员查看完整内容
38

相关内容

国际机器学习大会(International Conference on Machine Learning,简称ICML ) 是由国际机器学习学会(IMLS)主办的机器学习国际顶级会议,也是CCF-A类学术会议。ICML 2022 共收到5630 投稿,接收1117 篇 short oral,118篇 long oral,录用率为21.94%。
专知会员服务
52+阅读 · 2021年6月14日
专知会员服务
58+阅读 · 2021年4月29日
人工智能药物发现,讲述AI与药物交叉应用研究
专知会员服务
155+阅读 · 2021年1月28日
专知会员服务
52+阅读 · 2020年11月3日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
ICML'21 | 7篇GNN的可解释性与扩展性
图与推荐
0+阅读 · 2021年10月25日
ICML'21 | 六篇图神经网络论文精选(模型鲁棒性)
图与推荐
0+阅读 · 2021年10月18日
ICML'21 | 五篇图神经网络论文精选
图与推荐
1+阅读 · 2021年10月15日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2021年6月14日
专知会员服务
58+阅读 · 2021年4月29日
人工智能药物发现,讲述AI与药物交叉应用研究
专知会员服务
155+阅读 · 2021年1月28日
专知会员服务
52+阅读 · 2020年11月3日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
ICML'21 | 7篇GNN的可解释性与扩展性
图与推荐
0+阅读 · 2021年10月25日
ICML'21 | 六篇图神经网络论文精选(模型鲁棒性)
图与推荐
0+阅读 · 2021年10月18日
ICML'21 | 五篇图神经网络论文精选
图与推荐
1+阅读 · 2021年10月15日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
53+阅读 · 2018年12月11日
微信扫码咨询专知VIP会员