Tail recursive functions allow for a wider range of optimisations than general recursive functions. For this reason, much research has gone into the transformation and optimisation of this family of functions, in particular those written in continuation passing style (CPS). Though the CPS transformation, capable of transforming any recursive function to an equivalent tail recursive one, is deeply problematic in the context of reversible programming (as it relies on troublesome features such as higher-order functions), we argue that relaxing (local) reversibility to (global) invertibility drastically improves the situation. On this basis, we present an algorithm for tail recursion conversion specifically for invertible functions. The key insight is that functions introduced by program transformations that preserve invertibility, need only be invertible in the context in which the functions subject of transformation calls them. We show how a bespoke data type, corresponding to such a context, can be used to transform invertible recursive functions into a pair of tail recursive function acting on this context, in a way where calls are highlighted, and from which a tail recursive inverse can be straightforwardly extracted.


翻译:尾部递归函数允许比一般递归函数更广泛的优化功能。 因此,许多研究已经进入了功能组合的转化和优化, 特别是那些在继续传递样式( CPS) 中写成的函数。 虽然 CPS 转换能够将任何递转函数转换成等尾部递回函数, 在可逆编程( 因为它依赖于高阶函数等麻烦特征) 的背景下, 问题很大( 因为它依赖高阶函数), 我们争辩说, 放松( 本地) 递转功能到( 全球) 倒置功能会大大改善这种情况。 基于这个原因, 我们提出了尾部递转转换的算法, 特别是不可逆函数。 关键洞察力是, 程序变换的函数所引入的功能, 只有在转换函数调用它们时, 才会不可视而不见。 我们表明, 如何使用一种与此环境相对应的表态数据类型, 来将不可逆的递归回函数转换成对立的尾部递回函数, 在这种背景下, 以突出调的方式, 和从此尾部递转成直截为可解的函数。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2020年12月2日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员