Many approaches can derive information about a single speaker's identity from the speech by learning to recognize consistent characteristics of acoustic parameters. However, it is challenging to determine identity information when there are multiple concurrent speakers in a given signal. In this paper, we propose a novel deep speaker representation strategy that can reliably extract multiple speaker identities from an overlapped speech. We design a network that can extract a high-level embedding that contains information about each speaker's identity from a given mixture. Unlike conventional approaches that need reference acoustic features for training, our proposed algorithm only requires the speaker identity labels of the overlapped speech segments. We demonstrate the effectiveness and usefulness of our algorithm in a speaker verification task and a speech separation system conditioned on the target speaker embeddings obtained through the proposed method.


翻译:许多方法都可以从演讲中获取关于单一发言者身份的信息,通过学习承认声学参数的一致特征;然而,在特定信号中同时有多个发言者时,确定身份信息是困难的;在本文中,我们提议了一个新的深层发言者代表战略,可以可靠地从重叠的演讲中提取多个发言者身份;我们设计了一个网络,可以提取包含特定混合中每个发言者身份信息的高级别嵌入器;与需要参考声学特征的常规方法不同,我们提议的算法只要求将重叠的演讲部分标为发言者身份标签;我们展示了我们通过拟议方法所获取的语音算法和语音分离系统,以目标发言者嵌入为条件,以此为条件,在语音核查任务中显示我们的算法的有效性和有用性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
280+阅读 · 2020年5月8日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
280+阅读 · 2020年5月8日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员