Call for Participation: Shared Tasks in NLPCC 2019

2019 年 3 月 22 日 中国计算机学会
Call for Participation: Shared Tasks in NLPCC 2019

The Eighth CCF International Conference on Natural Language Processing and Chinese Computing. Registration Deadline: 2019/05/01



Registration Deadline: 2019/05/01

http://tcci.ccf.org.cn/conference/2019/


The CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC) is the annual conference of CCF TCCI (Technical Committee of Chinese Information, China Computer Federation). The NLPCC conferences have been successfully held in Beijing (2012),Chongqing (2013), Shenzhen (2014), Nanchang (2015), Kunming (2016), Dalian (2017) and Hohhot (2018). This year's NLPCC conference will be held in Dunhuang on October 9–14.


NLPCC 2019 will follow the NLPCC tradition of holding several shared tasks in natural language processing and Chinese computing. This year's shared tasks focus on both classic problems and newly emerging problems, including, 


Task 1: Cross-Domain Dependency Parsing

o Organizer: Soochow University and Alibaba Inc.

o Contact: Zhenghua Li (zhli13@suda.edu.cn) and Rui Wang (masi.wr@alibaba-inc.com)


Task 2: Open Domain Semantic Parsing

o Organizer: Microsoft Research Asia

o Contact: Nan Duan (nanduan@microsoft.com)


Task 3: Dialogue System

o Organizer: RSVP Technologies Inc.

o Contact: Ying Shan (yshan@rsvp.ai) 


The top 3 participating teams of each task will be certificated by NLPCC and CCF Technical Committee on Chinese Information Technology. If a task has multiple sub-tasks, then only the top 1 participating team of each sub-task will be certificated.


The detailed description of each task can be found in the task guidelines. Participants from both academia and industry are welcomed. Each group can participate in one or multiple tasks and members in each group can attend the NLPCC conference to present their techniques and results. The participants will be invited to submit papers to the main conference and the accepted papers will appear in the conference proceedings published by Springer LNCS. 


1. Overview of the Shared Tasks


There are three shared tasks in this year’s NLPCC conference and the detailed description of each task can be found in the task guidelines released. Here we only give a brief overview of each task.


◇ Task 1 – Cross-Domain Dependency Parsing


With the surge of web data (or user generated content), cross-domain parsing has become the major challenge for applying syntactic analysis in realistic NLP systems. To meet the challenge of the lack of labeled data, we have manually annotated large-scale high-quality domain-aware datasets with a lot of effort (http://hlt.suda.edu.cn/index.php/SUCDT) in the past few years. We provide a source-domain labeled dataset (~20K sentences from balanced corpus), three target-domain labeled datasets (product blogs, product comments, and web fiction; ~25K in total), and large-scale unlabeled texts (size to be determined). We setup four sub-tasks with two cross-domain scenarios, i.e., semi-supervised (thousands of target-domain labeled data for training) and unsupervised (no target-domain labeled data for training), and two tracks, i.e., closed and open. 


◇ Task 2 – Open Domain Semantic Parsing


The goal of this task is to predict the logical form (in lambda-calculus) of an input question based on a given knowledge graph. For example, for question “when was Bill Gates born?”, the predicted logical form should be  . Each question in our dataset is annotated with entities, the question type and the corresponding logical form. We split this dataset into a train set, a development set and a test set. Both train and development sets will be provided to participating teams, while the test set will NOT. After participating teams submit their output files, we will evaluate their performances.


◇ Task 3 – Dialogue System


In NLPCC2019, we setup an open domain conversation task to evaluate human-computer conversations. All participating systems will be talking with human annotators, live user-in-the-loop. In the task, understanding natural language inputs (which can be questions or statements) is crucial, as well as providing smooth responses. The responses will be evaluated from five aspects. We will also provide human-annotated real data for researchers, to contribute to the community.


2. How to Participate


Please fill out the registration form and send it to the coordinators of the tasks by email.


If you have any question about the shared tasks, please do not hesitate to contact us (ws@pku.edu.cn and nanduan@microsoft.com).


3. Important dates


2019/03/15:announcement of shared tasks and call for participation;

2019/04/01:release of detailed task guidelines & training data release;

2019/05/15:test data release;

2019/05/20:participants’ results submission deadline;

2019/05/30:evaluation results release and call for system reports and conference papers;

2019/06/30:conference paper submission deadline (only for shared tasks);

2019/07/30:conference paper accept/reject notification;

2019/08/10:camera-ready paper submission deadline;

2019/10/12~14:NLPCC 2019 main conference.


4. Shared Task Organizers (in alphabetical order)


Nan Duan, Microsoft Research Asia

Zhenghua Li, Soochow University

Ying Shan, RSVP Technologies Inc. 

Rui Wang, Alibaba Inc.



中国计算机学会

微信号:ccfvoice           

长按识别二维码关注我们



点击“阅读原文”查看详情



登录查看更多
5

相关内容

CCF自然语言处理与中文计算国际会议(NLPCC)是中国计算机联合会中文信息技术委员会(CCF-TCCI)的年会。NLPCC是一个在自然语言处理(NLP)和中文计算(CC)领域领先的国际会议。它是学术界、工业界和政府的研究人员和实践者分享他们的想法、研究成果和经验,并促进他们在该领域的研究和技术创新的主要论坛。官网链接:http://tcci.ccf.org.cn/conference/2019/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
100+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
71+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
92+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
90+阅读 · 2019年10月11日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
42+阅读 · 2019年8月26日
CCF推荐 | 国际会议信息6条
Call4Papers
7+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
9+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
5+阅读 · 2017年7月21日
Self-Driving Cars: A Survey
Arxiv
35+阅读 · 2019年1月14日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2018年1月23日
Arxiv
9+阅读 · 2016年10月27日
小贴士
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
7+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
9+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
5+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员